

17301

### 14115

3 Hours/100 Marks

| Seat No. |
|----------|
|----------|

Instructions:

- (1) All questions are compulsory.
- (2) Answer each next main question on a new page.
- (3) Illustrate your answers with **neat** sketches **wherever** necessary.
- (4) Figures to the **right** indicate **full** marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is **permissible**.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are **not** permissible in Examination Hall.

**M**ARKS

1. Attempt any ten:

20

- a) Find the gradient of the tangent of the curve  $y = \sqrt{x^3}$  at x = 4.
- b) Find the radius of curvature of the curve  $y^2 = 4ax$  at point (a, 2a).
- c) Evaluate:  $\int (\tan x + \cot x)^2 dx$ .
- d) Evaluate:  $\int \sec^2 (\log x) \frac{1}{x} dx$ .
- e) Evaluate: ∫xe<sup>x</sup>dx.
- f) Evaluate:  $\int \frac{1}{x^2 + 3x + 2} dx$ .
- g) Evaluate :  $\int_{1}^{2} \frac{dx}{3x-2}$ .
- h) Find the area above the x axis bounded by y = sinx and the ordinates  $x = \frac{\pi}{6}$

and 
$$x = \frac{\pi}{3}$$
.

P.T.O.



MARKS

- i) Find the order and degree of the equation  $2 \frac{d^2y}{dx^2} + \left(3\sqrt{1-\left(\frac{dy}{dx}\right)^2} y\right) = 0$ .
- j) Verify that  $y = Ae^x + Be^{-x}$  is a solution of  $\frac{d^2y}{dx^2} y = 0$ .
- k) A bag contains 7 white balls, 5 black balls and 4 red balls. If two balls are drawn at random from the bag. Find the probability that both the balls are white.
- I) What is the probability of getting more than 4 in a single throw of a die?

### 2. Attempt any four:

16

- a) Find the equation of tangent and normal to the curve  $4x^2 + 9y^2 = 40$  at point (1, 2).
- b) A beam is bent in the form of the curve  $y = 2 \sin x \sin 2x$ , find the radius of curvature of the beam at this point  $x = \frac{\pi}{2}$ .
- c) A metal wire 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.
- d) Evaluate:  $\int \frac{x-3}{x^3-3x^2-16x+48} dx$ .
- e) Evaluate:  $\int \frac{1}{x \left[9 + (\log x)^2\right]} dx$ .
- f) Evaluate:  $\int \frac{\sec^2 x}{(1 + \tan x)(3 + \tan x)} dx.$

# 3. Attempt any four:

16

- a) Evaluate  $\int_{0}^{\frac{\pi}{4}} x \sec^2 x \, dx$ .
- b) Evaluate  $\int_{1}^{2} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{3-x}} dx.$
- c) Find the area bounded by the curve  $y = x^2$  and line y = x.

MARKS

16

16

d) Solve: 
$$1-2 \frac{dy}{dx} = \cos^2(x-2y)$$
.

e) Solve: 
$$\frac{dy}{dx} = \frac{y}{x} + \sin \frac{y}{x}$$
.

f) Solve: 
$$(x+1)\frac{dy}{dx} - y = e^x (x+1)^2$$
.

### 4. Attempt any four:

a) Evaluate:  $\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx.$ 

b) Evaluate: 
$$\int_{0}^{1} x^{2} \sqrt{1-x} dx$$
.

c) Find by integration the area of the circle  $x^2 + y^2 = a^2$ .

d) Solve: 
$$\frac{dy}{dx} = e^{2x-3y} + 4x^2 e^{-3y}$$
.

e) Solve 
$$(2xy + y^2) dx + (x^2 + 2xy + \sin y) dy = 0$$
.

f) Show that 
$$y^2 = ax^2$$
 is a solution of  $x \left( \frac{dy}{dx} \right)^2 - 2y \frac{dy}{dx} + ax = 0$ .

# 5. Attempt any four:

a) A husband and wife appear in an interview for two vacancies in the same post. The probability of husband's selection is  $\frac{1}{7}$  and that of wife selection is

-3-

$$\frac{1}{5}$$
. What is the probability that:

- 1) Both of them will be selected 2) None of them will be selected.
- b) The overall percentage of failures in a certain examination is 20. If six candidates appear in an examinations, what is the probability that at least five pass the examination?



MARKS

c) A skilled typist, on routine work, kept a record of mistakes per day during 300 working days. Fit a Poisson distribution to the set of observations.

5

6

2 0 3 **x** :

90 42 12 3 1 **y** : 143 9

d) Evaluate:  $\int \frac{1}{1 + \sin x + \cos x} dx$ .

e) Evaluate :  $\int_{0}^{1} x (1 - x)^{3/2} dx$ .

f) Solve:  $\frac{dy}{dx} = -\frac{(y\cos x + \sin y + y)}{\sin x + x\cos y + x}.$ 

### Attempt any four:

16

a) A coin is tossed and a die is rolled. Show that the events head and six are independent and mutually exclusive.

b) If A and B are two events such that  $P(A) = \frac{1}{2} P(B) = \frac{1}{3}$  and  $P(A \cap B) = \frac{7}{12}$ . Find P (A'  $\cap$  B').

- c) In a sample of 1000 cases the mean of a certain test is 14 and standard deviation is 2.5. Assuming the distribution to be normal. Find:
  - 1) How many students score between 12 and 15?
  - 2) How many students score above 18?

d) Show that equation of the tangent to the curve  $\left(\frac{x}{a}\right)^m + \left(\frac{y}{b}\right)^m = 2$  at the point

(a, b) is 
$$\frac{x}{a} + \frac{y}{b} = 2$$
.

- e) Divide 80 into two parts such that their product is maximum.
- f) Two points A (1, 4) and B (9, 12) are on the parabola  $y^2 = 16x$ . Show that the area enclosed between the chord AB and the parabola is  $\frac{16}{2}$ .