3 Hours/100 Marks	Seat No.
Instructions :	(1) All questions are compulsory.
	(2) Answer each next main question on a new page.
	(3) Illustrate your answers with neat sketches wherever necessary.
	(4) Figures to the right indicate full marks.
	(5) Assume suitable data, if necessary .
	(6) Use of Non-programmable Electronic Pocket Calculator is permissible .
	(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

MARKS

1. Attempt **any ten** of the following : $\begin{vmatrix} 4 & 3 & 9 \end{vmatrix}$

a) Find x if
$$\begin{vmatrix} 4 & 3 & 9 \\ 3 & -2 & 7 \\ 11 & 4 & x \end{vmatrix} = 0.$$

b) Prove that the matrix
$$\begin{bmatrix} 1 & 4 \\ 6 & 9 \end{bmatrix}$$
, is a nonsingular matrix.

c) If
$$A = \begin{bmatrix} 3 & 4 & -2 \\ 2 & 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & -1 \\ 3 & 4 \\ 0 & 2 \end{bmatrix}$. Find AB.

d) Resolve into partial fractions $\frac{1}{x^3 - x}$.

- e) Define compound angle.
- f) Prove that $sin(\pi/2 + \theta) = cos \theta$.
- g) Express : $4\cos 30^{\circ} \cdot \sin 20^{\circ}$ as the sum or difference of trigonometric ratios.
- h) Find the principal value of, $\cos\left(\pi/2 \sin^{-1}\frac{1}{2}\right)$.

P.T.O.

17104

Marks

- i) Show that the lines 5x + 6y 1 = 0 and 6x 5y + 3 = 0 are perpendicular lines.
- j) Find equation of straight line passing through (4, -5) having slope $\frac{-2}{2}$.
- k) Find range and coefficient of range of the following distribution :
 xi: 10 20 30 40 50
 fi: 7 5 3 2 1
- I) If mean is 82.5, standard deviation is 7.2, find coefficient of variance.
- 2. Attempt any four of the following :
 - a) Solve the following equations by using, Crammer's rule :

x + y = 4 - z, y + z = 1 - 2x, x + z = y.

b) Find matrix X such that $\begin{bmatrix} 4 & 5 \\ -3 & 6 \end{bmatrix} + X = \begin{bmatrix} 10 & -1 \\ 0 & -6 \end{bmatrix}$. c) If $A = \begin{bmatrix} 1 & -2 \\ -3 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 2 & -5 \\ 1 & 0 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 6 & -7 & 0 \\ -1 & 2 & 5 \\ 1 & 0 & 3 \end{bmatrix}$, prove that

$$(AB)C = A(BC)$$

- d) Express the matrix A as sum of symmetric and skew-symmetric matrix of
 - $\mathbf{A} = \begin{bmatrix} -1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5 \end{bmatrix} \cdot$

e) Resolve into partial fractions $\frac{x+5}{x^2-x}$.

- f) Resolve into partial fractions $\frac{x^2 + 36x + 6}{(x-1)(x^2+2)}$.
- 3. Attempt any four of the following :

a) Find the inverse of the matrix
$$\begin{bmatrix} 1 & 2 & 4 \\ -1 & 2 & 3 \\ 1 & 4 & 1 \end{bmatrix}$$
 using adjoint method.

16

-3-

- b) Solve by matrix method the following equations using inverse method 3x + y + 2z = 3, 2x 3y z = -3, x + 2y + z = 4.
- c) Resolve into partial fractions $\frac{x^3 + 1}{x^2 + 6x}$.
- d) Resolve into partial fractions $\frac{(\tan \theta + 1)}{(\tan \theta + 2) (\tan \theta + 3)}$.
- e) If $\cos A = \frac{-3}{5}$, $\sin B = \frac{20}{29}$, where A and B are the angles in the third and second quadrant respectively. Find tan (A + B).
- f) Without using calculator find the value of $sin(150^\circ) tan(315^\circ) + cos(300^\circ) + sec^2(360^\circ)$.
- 4. Attempt any four of the following :
 - a) Prove that, $1 + \tan A \cdot \tan 2A = \sec 2A$.
 - b) Prove that, $sin(A B) = sinA \cdot cosB cosA \cdot sinB$.
 - c) If A and B both are obtuse angles and $\sin A = \frac{5}{13}$, $\cos B = \frac{-4}{5}$ then find the quadrant of angle A + B.
 - d) Prove that : $\frac{\sin 8x \sin 5x}{\cos 7x + \cos 6x} = \sin x + \cos x \cdot \tan \frac{x}{2}.$

e) Prove that :
$$2 \tan^{-1} x = \tan^{-1} \left[\frac{2x}{1-x^2} \right]$$
.

f) Prove that,
$$\cos^{-1}(\frac{4}{5}) + \tan^{-1}\frac{3}{5} = \tan^{-1}\frac{27}{11}$$
.

- 5. Attempt any four of the following :
 - a) Prove that $\frac{\sin 4\theta + \sin 2\theta}{1 + \cos 2\theta + \cos 4\theta} = \tan 2\theta$.
 - b) Prove that $\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \tan 5A.$

MARKS

16

MARKS

c) Prove that
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left[\frac{x+y}{1-xy} \right]$$
.

- d) Find the angle between the lines y = 5x + 6 and y = x.
- e) If $P(x_1, y_1)$ is any point and Ax + By + C = 0 is a line, then prove that the

perpendicular distance of a point P from line is given by $\left| \frac{Ax_1 + By_1 + C}{\sqrt{A^2 + B^2}} \right|$

- f) Find the equation of line passing through the point of intersection of the lines 2x + 3y = 13, 5x - y = 7 and perpendicular to the line 3x - y + 7 = 0.
- 6. Attempt any four of the following :
 - a) Find the equations of the lines passing through the point (6, 5) and parallel to the line having intercepts 2 and 4 on X and Y axis respectively.
 - b) Find the acute angle between the lines 3x 2y + 4 = 0, 2x 3y 7 = 0.
 - c) The two sets of observations are given below :

Set I	Set II	
$\overline{x} = 82.5$	$\overline{\mathbf{x}} = 98.75$	
σ = 7.3	$\sigma = 8.35$	
Which of the	two sets is more c	onsistent?

d) Find variance and coefficient for the following data :

Class-intervals: 55-65 65-75 75-85 85-95 95-105 105-115 115-125 No. of workers : 10 12 15 20 14 7 2

e) Calculate Standard deviation of the following table :

Weekly Expenditure below	w: 05	10	15	20	25
No. of Students	: 06	16	28	38	46

f) Calculate mean deviation about mean of the following distribution :

xi	:	3	4	5	6	7	8
----	---	---	---	---	---	---	---

fi : 4 10 6 3 9 8